
YANGON UNIVERSITY OF ECONOMICS 

DEPARTMENT OF STATISTICS 

MASTER OF APPLIED STATISTICS PROGRAMME 

 

 

 

 

 

ARIMA MODELLING FOR MALARIA INFECTION  

IN KACHIN STATE 

 

 

 
 

 

THEINGI AYE 

MAS – 25 

 

 

 

 

 

 

 

 

 

 

 

 

DECEMBER, 2019 



 

 

YANGON UNIVERSITY OF ECONOMICS 

DEPARTMENT OF STATISTICS 

MASTER OF APPLIED STATISTICS PROGRAMME 

 

 

 

ARIMA MODELLING FOR MALARIA INFECTION  

IN KACHIN STATE 

 

 

 

This thesis is submitted as a partial fulfillment towards 

The Degree of Master of Applied Statistics (MAS) 

 

 

 

BY  

 

 

 

THEINGI AYE 

MAS – 25 

 

 

 

 

 

DECEMBER, 2019 



 

 

YANGON UNIVERSITY OF ECONOMICS 

DEPARTMENT OF STATISTICS 

 

 

 

 

ARIMA MODELLING FOR MALARIA INFECTION  

IN KACHIN STATE  

 (JANUARY, 2011 TO DECEMBER, 2016) 

 

 

 

 

This Thesis is submitted to Board of Examination as partial fulfillment of the 

requirement for degree of MAS (Master of Applied Statistics) 

 

 

 

Approved by the Board of Examiners 

 

 

 

Supervised by Submitted by 

 

 

Prof. Dr. Maw Maw Khin                                       Theingi Aye  

Professor (Head of Department)                             Roll No. 25 

Department of Statistics                                          MAS. (Batch -1) 

Yangon University of Economics           Yangon University of Economics 

 

DECEMBER, 2019 



 

ACCEPTANCE 

  

Accepted by the Board of Examiners of the Department of Statistics, Yangon 

University of Economics in partial fulfillment for the requirement of the Master 

Degree, Master of Applied Statistics. 

 

 

 

 

………………………………….. 

(Chairperson) 

Prof. Dr Tin Win 

Rector 

Yangon University of Economics 

 

 

 

 

      …..………………………….. 

           (Chief Examiner/Supervisor) 

     Prof. Dr. Maw Maw Khin 

     Professor (Head of Department) 

     Department of Statistics 

     Yangon University of Economics 

 

 

 

 

..…………………………..   …..………………………….. 

(Examiner)     (Examiner) 

Daw Win Win Nu    Prof. Dr. Mya Thandar 

Associate Professor (Retd.)   Professor  

Department of Economics   Department of Statistics 

Yangon University of Distance  Yangon University of Economics 

Education 

 

 

DECEMBER, 2019 



i 

ABSTRACT 

This study attempts to model and to forecast malaria infection of Kachin State 

which had been affected malaria highest risk areas at 2004 in Myanmar. This study 

utilized monthly time series data from January, 2011 to December, 2016 and 

employed the well-known Box-Jenkins Seasonal ARIMA Modeling procedures. The 

objectives of this study are to study Malaria incidence in Kachin State, to examine the 

best fitted ARIMA model and to forecast the incidence of Malaria infection in Kachin 

State based on the best fitted model. Following the Box and Jenkins methodology, the 

time series modeling involves transformation of the data to achieve stationary 

followed by identification of appropriate models, estimation of model parameters, 

diagnostic checking of the assumption model and finally forecasting of future data 

values. SARIMA (1,0,0) x (1,1, 0)12 was defined the best model to predict the future 

Malaria infection in Kachin state and forecasted the future values using the fitted 

model. The results of this paper indicate that over 50% of malaria incidence in 

Kachin State is decreased in 2017. That is why malaria incidence in Kachin State may 

be eliminated in 2020 although the Kachin State is not included in 2020 targeted areas 

for malaria elimination in Myanmar. There is also observed that the SARIMA model 

is capable of representing with relative precision the number of malaria infection in 

the next year.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Rationale of the Study 

Malaria is an infectious disease caused by a parasite; it is spread by the bite of 

an infected mosquito. It is caused by the Plasmodium genus that is transmitted 

between humans by Anopheles mosquitoes (Thomas, 2014). Falciparum and P.vivax 

are the most common species that cause malaria in humans. Every year, 300 to 700 

million people get infected. Malaria kills 1 million to 2 million people every year. 

Globally, more countries are moving towards elimination: in 2016, 44 

countries reported fewer than 10,000 malaria cases, up from 37 countries in 2010. In 

2016, an estimated 216 million cases of malaria occurred worldwide (95% confidence 

interval [CI]: 196–263 million), compared with 237 million cases in 2010 (95% CI: 

218–278 million) and 211 million cases in 2015 (95% CI: 192–257 million). Malaria 

continues to claim a significant number of lives: in 2016, 445000 people died from 

malaria globally, compared to 446000 estimated deaths in 2015. In 2016, WHO 

identified 21 countries with the potential to eliminate malaria by the year 2020. 

Asia ranks second to Africa in terms of malaria burden. In 

19 countries of Asia, malaria is endemic and 2.31 billion people or 62% of the total 

population in those countries are at risk of malaria. In 2010, WHO estimated around 

34.8 million cases and 45,600 deaths due to malaria in Asia. Sri Lanka was 

declared malaria-free in 2016, becoming only the second country in Southeast Asia, 

after the Maldives, to successfully eliminate malaria. Apart from India, Indonesia, 

Myanmar, and Thailand, malaria-endemic countries have reported reductions 

in malaria incidence of more than 75% since 2000. 

Malaria is one of the major public health problems in Myanmar about 1976. In 

year 1978, Peoples Health Plan was initiated and malaria control programme was 

integrated with Basic Health Services. Compared to 2002 data, cases and deaths were 

lower in 2003 and 2004. Year 2004 is the lowest recorded number of malaria cases in 

outpatient and inpatient department, malaria deaths as well as malaria morbidity rate 

and mortality rate in Myanmar during the last two and half decade period.  

In term of year 2004 statistics, the areas of high malaria morbidity rate (per 

1000 population) are Rakhine State (62.43), Chin State (46.41), Kayah State (28.92), 
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Kachin State (24.34) and Tanintharyi Division (21.46). High malaria mortality rate 

(per 100,000 population) were seen in Kayah State (14.00), Kachin State (8.80), Chin 

State (8.58), Shan State (7.55) and Tanintharyi Division (7.44). Myanmar has made 

impressive progress in malaria control during the past 5 years: 80 % reduction in the 

number of confirmed malaria cases has been registered from 2011 to 2016 (from 

567,452 to 110,146 respectively) and 96 % reduction in the number of deaths 

attributable to malaria has been reported in the same period (from 581 to 21 

respectively). 

In term of world malaria report (2017), effective surveillance of malaria cases 

and deaths is essential for identifying the areas or population groups that are most 

affected by malaria. Malaria related cases had dropped significantly and there was 

zero malaria death since 2015. Although significant progress has been made in recent 

years, the malaria burden in Myanmar remains the highest among the six countries of 

the GMS (Greater Mekong sub region).  

The ministry is trying to stop transmission of malaria in five regions; Yangon, 

Ayeyarwaddy, Bago, Mandalay and Magwe by 2020. These five regions are excluded 

the regions which has been the lowest recorded number of malaria cases, death, 

morbidity rate and mortality rate in Myanmar, 2004. Those lowest recorded areas of 

2004 were Rakhine State, Chin State, Kayah State, Kachin State and Tanintharyi 

Division. Kachin state was the highest infectious area among the lowest recorded 

areas of 2004. This study is mainly focused on Kachin State in order to figure out 

why this area is not excluded in targeted areas of malaria elimination in 2020. 

1.2 Objectives of the Study 
 

The objectives of the study are  

i) to study Malaria incidence in Kachin State 

ii) to examine the best fitted ARIMA model of Malaria infection in Kachin State 

iii) to forecast the incidence of Malaria infection in Kachin State based on the best 

fitted model.   

1.3  Method of Study  

Monthly time series secondary malaria data of Kachin State from January 

2011 to December 2016 are used for this study. Box and Jenkins Method (SARIMA) 

model is applied for forecasting the incidence of Malaria in Kachin State, Myanmar. 
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Model identification is made based on autocorrelation (ACF) and partial 

autocorrelation function (PACF). The parameters are estimated by using the Least 

Square Method depending on the model. The adequacy of the models was verified by 

plots of the correlograms and ACF and PACF of the residuals and Ljung-Box test, 

which is a test for hypotheses of no correlation across a specified number of time 

lags. ACF of the residuals and Ljung-Box statistics are useful for testing the 

randomness of the residuals. 

1.4 Scope and Limitations of the Study  

This study is focus on malaria infected people in Kachin State of Myanmar. 

The study period is from January 2011 to December 2016. The required data are 

obtained from National Malaria Control Program (NMCP), Nay Pyi Taw, Myanmar. 

 

1.5  Organization of the Study 

This paper consists of five chapters; Chapter (1) illustrates introduction that 

include rational of the study, objective of the study, scope and limitation of the study, 

method of study and organization of the study. Chapter (2) mentions the description 

of literature review. Chapter (3) describes the research methodology which is used in 

this paper. Chapter (4) presents the findings of the study which are the regional trends 

of malaria infection in Kachin State, Myanmar and estimation of malaria infection in 

next years of Myanmar. Chapter (5) illustrates Conclusion of the study. 

 

 

 

 

 

 

 

 

 



 

CHAPTER II 

LITERATURE REVIEW 

In this chapter, critically review the background of Malaria and literature of 

the previous research papers and articles which are relevant to the current study was 

presented. 

 

2.1  Background of Malaria  

Malaria is an infectious disease caused by a parasite, called Plasmodium that 

invades red blood cells and liver cells. The parasites are transferred to humans by the 

bite of an infected Anopheles mosquito. There are four different species of 

Plasmodium parasites which cause most of the malaria in humans: Plasmodium 

vivax, Plasmodium falciparum, Plasmodium ovale, and Plasmodium malariae, with 

some species causing more severe symptoms than others.  

The severity of malarial illness depends largely on the immunological status 

of the person who is infected. Partial immunity develops over time through repeated 

infection, and without recurrent inflection, immunity is relatively short-lived.  

Although mosquitoes can be found on every continent, malaria is only found 

in specific parts of the world like Sub-Saharan Africa, the Indian subcontinent, South 

Pacific Islands (Solomon Islands, Papua New Guinea) and Haiti (in the Caribbean). 

Mosquitoes used to transmit malaria like warm, wet tropical and subtropical 

regions. Malaria is indeed a great global health problem affecting approximately 106 

countries, with half of the world’s population at risk (3.3 billion people) (WHO, 

2014).  

 

2.2 Reviews on Related Studies 

The available literature on the subject has been reviewed and presented under 

the following: 

Anokye et al., (2018), studied namely, “Time series analysis of malaria in 

Kumasi: Using ARIMA models to forecast future incidence”. The monthly malaria 

data were used from the Regional Health Directorate from January 2010 to December 

2016. Trend of malaria prevalence was analyzed and compared by years and months. 

The Quadratic model was used for the forecasting of the half year incidence of 

Malaria while Auto regressive integrated moving average (ARIMA) (1, 1, 2) was 
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used for forecasting monthly malaria incidence for the years 2018 and 2019 in 

Kumasi Metropolis. 

Anwar et al. (2016), who conducted a study namely “Time series analysis 

of malaria in Afghanistan: using ARIMA models to predict future trends 

in incidence”. This study employs data from Ministry of Public Health monthly 

reports from January 2005 to September 2015. Malaria incidence in Afghanistan was 

forecasted using autoregressive integrated moving average (ARIMA) models in order 

to build a predictive tool for malaria surveillance. Results indicate ARIMA models 

can be applied to forecast malaria patterns in Afghanistan, complementing current 

surveillance systems. The models provide a means to better understand malaria 

dynamics in a resource limited context with minimal data input, yielding forecasts 

that can be used for public health planning at the national level. 

Babajide Sadiq (2015) conducted a research; “A time series analysis of 

malaria cases in Ogun State, Nigeria”to find out the changes in the trend of malaria 

cases and to know whether meeting the Millennium Development Goal for malaria. 

10 years malaria data from 2004 to 2013 were used and a trend analysis was 

performed on the malaria cases. Then, rating to know if there is a monthly or yearly 

increase or decrease in malaria incidence and a time-series analysis (ARIMA model) 

was conducted to forecast malaria cases for 2014 and 2015. 

Jserbr (2018), stated that “Time Series Analysis and Forecasting Model for 

Monthly alaria Infection by Box-Jenkins Techniques in Kass Zone, South Darfur 

State, Sudan”. Time series analysis has been extensively utilized in health fields, and 

epidemic diseases. The major goal of this study become to offer a malaria prediction 

model by means of the usage of Box-Jenkins statistics and historic malaria morbidity 

records for malaria-endemic areas in Kass zone. Sudan over a period of 4 years from 

January 2005 to December 2008, were analyzed by seasonal ARIMA model. The 

ARIMA forecast period is January 2008 to December 2008, there is deviation from 

month 1 and month 2. Prediction from month 9 to month 11 almost exact. Slight 

deviation in predicting in month 6 to month 9, over prediction is good.  

Kumar V (2014), mentioned that “Forecasting malaria cases using climatic 

factors in Delhi, India: a time series analysis”. This study was designed to forecast 

malaria cases using climatic factors as predictors in Delhi, India. Monthly malaria 

cases of the malaria clinic at Rural Health Training Centre (RHTC), Najafgarth, Delhi 

from January 2006 to December 2013. Autoregressive integrated moving average, 
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ARIMA (0,1,1) (0,1,0) (12), was the best fit model and it could explain 72.5% 

variability in the time series data. Seasonal adjusted factor (SAF) for malaria cases 

shows peak during the months of August and September. 

Martinez, E.Z., et al. (2011), “A SARIMA forecasting model to predict the 

number of cases of dengue in Campinas, State of S o Paulo, Brazil,” Revista da 

Sociedade Brasileire de Medicina Tropical. The results of this article indicate that 

SARIMA models are useful tools for monitoring dengue incidence. They also observe 

that the SARIMA model is capable of representing with relative precision the number 

of cases in a next year. 

O Ebhuoma (2018) had made a study namely “A Seasonal Autoregressive 

Integrated Moving Average (SARIMA) forecasting model to predict monthly malaria 

cases in KwaZulu-Natal, South Africa”. This study was using a clinically confirmed 

monthly malaria case dataset that was split into two. The first dataset (January 2005-

December 2013) was used to construct a SARIMA model by adopting the Box-

Jenkins approach, while the second dataset (January- December 2014) was used to 

validate the forecast generated from the best-fit model. Among three plausible 

models, the SARIMA (0,1,1) x (0,1,1)12 was selected as the best-fit model. It could 

serve as a useful tool for modeling and forecasting monthly malaria cases in KZN. It 

could therefore play a key role in shaping malaria control and elimination efforts in 

the province. 

 Takyi Appiah, S., Otoo, H. and  Nabubie, I.B. (2015),  studied namely “Times 

Series Analysis of Malaria Cases in EjisuJuaben Municipality”. The number of 

malaria cases in the Ejisu-Juaben Municipality was modeled statistically to find the 

best model for forecasting the disease for a two-year period. The Box-Jenkins 

approach was applied to Secondary data from the municipality to determine the best 

model fit. From the model obtained, the forecast was found to have an oscillatory 

trend for some period and then remain constant for the period of two years from 2014 

and 2016. 

 



 

CHAPTER III 

RESEARCH METHODOLOGY 

 

A time series is a continuous set of observations that are ordered in equally 

spaced in travel (e.g., one per month). Time series is anything which is observed 

sequentially over the time at regular interval like hourly, daily, weekly, monthly, 

quarterly etc. The data of time series can be categorized as stationary and non-

stationary data in term of its trend presence or absence. No trend in data leads to non-

stationary of time series.  

  

3.1 Components of Time Series  

There are four common time series patterns. They are Trend patterns, 

Seasonal patterns, Cyclical patterns and Random patterns.   

Trend Pattern 

A trend is a general increase or decrease in a time series that lasts for 

approximately seven or more periods (e.g., seven months, where seven is a crude rule 

of thumb). Trends are caused by long-term population changes, growth during 

product and technology introductions, changes in economic conditions, and so on.  

Seasonal Pattern 

Seasonal series result from events that are periodic and recurrent (e.g., 

monthly changes recurring each year). Common seasonal influences are climate, 

human habits, holidays, repeating promotions, new-product announcements, and so 

on. Seasonality can occur many different ways, for example, by week of the year, 

month of the year, day of the month, day of the week (e.g., telephone usage by hour).  

Cyclical Pattern 

Economic and business expansions (increasing demand) and contractions 

(recessions and depressions) are the most frequent cause of cyclical influences on 

time series. These influences most often last for two to five years and recur, but with 

no known period. 

Random Pattern 

Random time series are the result of many influences that act independently to 

yield nonsystematic and nonrepeating patterns about some average value. Purely 

random series have a constant mean and no systematic patterns. 
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3.2 Time Series Models 

A time series model can be expressed as some combination of these 

components. The model is simply a mathematical statement of the relationship among 

the four components.  

 Two types of models are commonly associated with time series; 

 (i) the additive model and  

 (ii) the multiplicative model  

 The additive model is constructed by adding four components. That is  

 Yt = Tt + St + Ct + Rt 

 The multiplicative model is constructed by multiplying four components. That 

is  

 Yt = Tt × St × Ct × Rt 

 where, Yt is the value of the time series for time period 

 Tt is the trend value 

 St is the seasonal variation 

 Ct is the cyclical variation 

 Rt is the random variation for the same time period.  

 The additive model is usually used when the seasonal swing of time series 

does not change with time interval 't'. This model suffers from the somewhat 

unrealistic assumption that the component of each other.  

 The multiplicative model is usually used when the seasonal swing of time 

series is charging with time variable 't'. In this model, only trend is expressed in the 

original units, and seasonal, cyclical, and random variations are stated in terms of 

percentages.  

 Monthly or quarterly time series may show seasonal effects within years. 

Seasonality means a tendency to repeat a pattern of behavior over a seasonal period, 

generally one year. Seasonal series are characterized by a display of strong serial 

correlation at a seasonal lag, that is, the lag corresponding to the number of 

observations per seasonal lag. Seasonal time series usually display time to time 

changes over the years, showing also within year variations. It is useful to understand 

the actual situation and is used for short term planning.  
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3.3 Test of Seasonality 

There are two main reasons of isolating the seasonal component or element. 

They are  

(i) to study seasonal variations 

(ii) to eliminated them. 

In the study of seasonality, seasonal variation for each month of the year is 

usually considered. As such, the following statistical model is employed 

yij = µ + ai + bj + eij  ; 1 ≤ i ≤ n , 1 ≤ j ≤ k 

Where ,  µ = general mean/ unknown constant 

  ai = effect of ith year (i = 1, 2, 3, …, n)  

bj = effect of jth month (j = 1, 2, 3, …, n) 

eij = random error 

yij = observed value of y at jth month of ith year. 

Hence, it is assumed that eij are independently and normally distributed with mean 

zero and constant variance ϭ2. 

  i.e.  eij ~ IN (0, ϭ2) 

In general,  

H0 : b1 = b2 = … = b12  = 0 

There exist no monthly effects. i.e. bj is zero or there is no seasonality.  

H1 : At least one bj is not equal to zero. 

There exists monthly effect and there is seasonality.  

Test is obtained from the following computation procedure and analysis of variance 

(ANOVA) table shown below.  

SST = Total Sum of Square = ∑i∑ijyij
2 – (C.T) 

SSM = Sum of Square due to months = j
2 – (C.T)  

SSY = Sum of Square due to years = j
2 – (C.T)  

SSE = Error Sum of Squares = SST – SSM – SSY 

Where C.T = G2/nk, G = ij = Grand Total 
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After computation of SST, SSM, SSU and SST – SSM – SSY, the following ANOVA 

table is constructed.  

Source 
Sum of 

Square 

Degree of 

Freedom 
Mean Square F-Ratio 

Due to Months 

Due to Years 

Error 

SSM 

SSY 

SSE 

k-1 

n-1 

(n-1) (k-1) 

MSM = SSM / k-1 

MSY = SSY / n-1 

MSE = SSE / (n-1) (k-1) 

F1= MSM/MSE 

F2= MSY/MSE 

Total SST kn-1   

 At 100 (1- α) % level of significant, the critical value from the F table for the degree 

of freedom (k-1) and (k-1) (n-1) is given by, K= Fα, (k-1), (k-1) (n-1). 

If F ≥ K, reject H0 and it is decided that there exists seasonality. 

If F < K, accept H0 and it is decided that there exists no seasonality. 

 

3.4 Method of Finding Seasonal Variation 

 Seasonal variation is measured in terms of an index, called a seasonal index. It 

is an average that can be used to compare an actual observation relative to what it 

would be if there were no seasonal variation. An index value is attached to each 

period of the time series within a year. This implies that if monthly data are 

considered there are 12 separate seasonal indices, one for each month. There exist 

different methods for measuring the seasonal variation of a time series. The methods 

have been developed to meet different objectives of estimating seasonal and the 

assumed models of the time series. The seasonal pattern itself is important in the 

application of these methods since most of the methods assume that the seasonal 

pattern is constant or stable.  

 In finding the index of seasonal variation as seasonal measures, it should be 

noted that the index must 

(a) Measure all the variation is the series that is seasonal in character, and  

(b) Measure nothing but the seasonal variation 

A seasonal index thus consists of a series of percentage figures, averaging 

100, which shows the relative level of the series for the various months, quarters or 

weeks of the year. An index of seasonal variation can be constructed by expressing 

each item in the time series as a percent of the average monthly or quarterly value for 

the year.  
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3.4.1 Ratio to Moving Average Method 

 A seasonal index is a measure of how a particular season compares with the 

average season. Seasonal indices are calculated so that their average is 1. This means 

that the sum of the seasonal indices equals the number of seasons.  

The steps for the computation of the seasonal index by the Ratio to Moving 

Average method are shown as below. (Steiner, 1956) 

1. Find the twelve months centered moving averages. This is equivalent to a 

moving average of thirteen months with weights   

  (1,2,2, … , 2,2,1) 

By finding twelve months centered moving averages, we eliminate the 

seasonality, since the seasonal pattern is periodic with a period of twelve months. 

Also, it will eliminate the random component or irregular movements. Therefore, 

the centered twelve month moving averages are the approximates of trend and 

cyclical components.  

2. Compute the ratio to moving average values, that is, the original data is 

divided by its appropriate moving average value. There, the first and last six 

months may not be obtained. 

By this step, the trend and cyclical components are removed from the original 

data and the ratios are the values due to seasonal and random components. They 

are called specific seasonal. (Steiner, 1956) 

3. Compute the averages of these ratios referring to the same months. These 

averages are the crude seasonal index values. 

This step involves two different purposes: the elimination of the random 

components and averaging the seasonal relatives referring to the same months.  

4. Adjust the crude seasonal index. 

In multiplicative mode, the total seasonal index values have to be equal to twelve 

(or 1200 percent) for monthly series. Therefore, the crude seasonal index is 

adjusted to get a total of twelve (or 1200 percent). 

 

3.5  Stationary Stochastic Process 

3.5.1  Mean and Variance of Stochastic Process 

The stochastic process  has a constant mean, 

     (3.5.1) 
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This defines the level about which it fluctuates, and a constant variance. 

   (3.5.2) 

which measures its spread about this time level. 

 The mean  of the stochastic process can be estimated by the sample mean 

      (3.5.3) 

and the variance   can be estimated by the sample variance 

     (3.5.4) 

If the  do not depend on t (or) they are constant values, the stochastic 

process is called strictly stationary process. 

 

3.5.2  Autocovariance and Autocorrelation Coefficients 

The covariance between  and  is called the auto-covariance at lag k and 

is defined by 

    (3.5.5) 

and the correlation between  and  as 

       (3.5.6) 

where . As function of k,  is called the 

autocovariance function and  is called the autocorrelation function. 

For a stationary process the autocovariance function  and the 

autocorrelation function  have the following properties. 

 1.  

 2.  

 3. and  for all k. 

 

3.5.3  Partial Autocorrelation Function 

 The following conditional correlation 

 Cor      (3.5.7) 

 and is usually referred to as the partial autocorrelation in time series analysis. 

 Consider a stationary process and, assume that E  = 0. Let the linear 

dependence of  on , ,.....,and  be defined as the best linear 

estimate in the mean square sense of  as linear function of , , ....., and 

. That is, if  is the best linear estimate of , then 
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 = ,   (3.5.8) 

Where  are the mean squared linear regression, coefficients 

obtained from minimizing 

     E =E( .  (3.5.9) 

 The routine minimization method through differentiation gives the following 

linear system of equations 

   (3.5.10) 

Hence, 

  .  (3.5.11) 

In terms of matrix notation, the above system of becomes 

     (3.5.12) 

Similarly, 

     (3.5.13) 

Where  are the mean squared linear regression, coefficients 

obtained by minimizing 

E  = E(    (3.5.14) 

Hence, 

     (3.5.15) 

This implies that  

It follows that the partial autocorrelation between and  will equal the 

ordinary autocorrelation between  and . Thus, letting denote 

the partial autocorrelation between  and  , having 

     (3.5.16) 

Now,  
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Since all other remaining terms reduce to zero by virtue of equation (3.5.10). 

Hence, 

  (3.5.17) 

Next, using the fact that , Having 

 

=  

=  

= .      (3.5.18) 

Therefore, 

    (3.5.19) 

Solving the system in (3.12) for  by Cramer’s rule gives 

   (3.5.20) 

 as the ratio of two determinants. The matrix in the numerator is the same as 

the symmetric matrix in the denominator except for its  column being replaced by 

. Substituting  in (3.20) to equation (3.19) and multiplying both the 

numerator and denominator of (3.19) by the determinant 

, 

the resulting  in (3.19) can be easily seen to equal the ratio of the expansion of the 

following expression in terms of the last column, 
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    (3.5.21) 

The partial autocorrelation can also be derived as follows. Consider the 

regression model, where the dependent variable  from a zero mean stationary 

process is regressed on k lagged variables and , i.e., 

,    (3.5.22) 

Where  denotes the  regression parameter and  is a normal error 

term uncorrelated with for . Multiplying  on both sides of the 

above regression equation and taking the expectation, getting 

     (3.5.23) 

and hence,   (3.5.24) 

For j=1, 2, …, k, having the following system of equations: it can be written as 

follows 

 

 

 

 

Using Creamer’s rule successively for k = 1,2, …, 
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        (3.5.25) 

Comparing Equation (3.25) with (3.21), it can be seen that equals . Thus, the 

partial autocorrelation between  and  can also be obtained as the regression 

coefficient and  in (3.22). Because  has becomes a standard notation for the 

partial autocorrelation between and in time series. As a function of k, is 

usually referred to as the partial autocorrelation function (PACF). 

 

3.6 White Noise Processes 

 In process { }is called a white noise process if it is a sequence of 

uncorrelated random variables from a fixed distribution with constant mean E( ) = 

 , assumed to be 0, constant variance Var ( ) =   and   = Cov ( ) = 0 

for all k  0. A white noise process { } is stationary with the autocovariance 

function 

  =                               (3.6.1) 

The autocorrection function 

  =                                (3.6.2) 

The partial autocorrection function 

  =                             (3.6.3) 

By definition  = =1 for any process, when the autocorrection and partial 

auto correlations, refer only to  and  for  The basic phenomenon of the 

white noise process is that ACT and PACT are identically equal to zero. 
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3.7 Autoregressive Processes 

 Based on a finite number of available observations, a finite order parametric 

model was constructed to describe a time series process. In this chapter, the 

autoregressive modes were described as a special case. These models are useful in 

describing a wide variety of time series. The characteristics of each process in terms 

of autocorrelation and partial autocorrelation functions will also be discussed in this 

section. 

 In time series analysis, there are two useful representations to express a time 

series process. The first one is to write a process  in an autoregressive (AR) 

representation, in which regress the value of  at time t on its own past values plus a 

random shock, i.e., 

      (3.7.1) 

or equivalently, 

         (3.7.2) 

where  and 1+ . The autoregressive 

representation is a very useful model for the mechanism of forecasting. In the 

autoregressive representation of a process, if only a finite number of  weights are 

nonzero, i.e.,  and  for k  p, then the resulting 

process is said to be an autoregressive process (model) of order p, which is denoted as 

AR (p). It is given by  

    (3.7.3) 

,    (3.7.4) 

or 

where , and  is random error or disturbance term. 

Since , the process is always invertible. To be stationary, 

the roots of  (B) = 0 must lie outside of the unit circle. 

 The AR processes are useful in describing situations in which the present 

value of a time series depends on its preceding values plus a random shock. First, 

consider the following simple autoregressive models. 
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3.7.1 General  Order Autoregressive AR ( ) Process 

The order autoregressive process AR ( ) is 

     (3.7.5) 

or 

 (3.7.6) 

 

(a)  Autocovariance Function of General AR (p) Process 

 To find the autocovariance function, both sides of equation (3.7.6) is multiply 

by  

 

and take the expected value  

k 0,   where E (  = 0 for k 0. 

 

(b)  Autocorrelation Function of General AR(p) Process 

 The following recursive relationship for the autocorrelation function; 

k 0.   (3.7.7) 

From (3.32), the ACF  is determined by the difference equation 

fork 0. Hence, it can be written 

as 

 

where , and  (i=1,2,...,m) are the roots of multiplicity  of  

Using the difference equations results, as follows, 

       (3.7.8) 

If  for all , are all distinct and the above reduces to 

    (3.7.9) 

For a stationary process, and . Hence, the ACF  tails off as a 

mixture of exponential decays and/or damped sine waves depending on the roots of 

. Damped sine waves appear if some roots are complex. 
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(c)  Partial Autocorrelation Function of General AR(p) Process 

By using the fact that for k 0, it can 

obviously be seen that when k p the last column of the matrix in the numerator of 

 in (3.25) can be written as linear combination of previous column of the same 

matrix. Hence, the PACF  will vanish after lag p.  

 

3.8  Moving Average Processes 

 The characteristics of moving average processes in terms of the 

autocorrelation and partial functions will be discussed as follows. A process is a 

linear combination of a sequence of uncorrelated random variables, that is, 

    (3.8.1) 

 

where { } is which white noise process with mean zero and variance . 

 In the moving average representation of a process, if only a finite number of 

 weights are nonzero, that  and  for      

k  q, then the resulting process is said to be a moving average process or model of 

order q and is denoted as MA (q). It is given by 

  or 

 

where . 

 Because , a finite moving average process is 

always stationary. This moving average process is invertible if the roots of  

lie outside of the unit circle. 

Moving average processes are useful to describe a phenomenon in which 

events produce an immediate effect that only lasts for only short periods of time. To 

discuss other properties the MA(q) process, let us first consider the following simpler 

cases. 

 

3.8.1  General  Order Moving Average MA ( ) Process 

 The general order moving average process is  

 = ( ,    (3.8.2) 
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For this general MA (q) process, the variance is 

 where . 

(a) Autocovariance Function of the MA(q) Process 

 

(b)  Autocorrelation Function of the MA(q) Process 

 

 The autocorrelation function of an MA (q) process cuts off after lag q. This 

important property enables us to identify whether a given time series is generated by a 

moving average process. 

  

3.8.2 Autoregressive Moving Average ARMA Processes 

The following useful mixed autoregressive moving average ARMA 

processes 

       (3.8.3) 

where, 

 and  

For the process to be invertible, it requires that the roots of  lie outside the 

unit circle. To be stationary, it requires that the roots of  0 lie outside the unit 

circle. Assuming that  0 and  share no common roots this process 

refers to an ARMA (p, q) process or model, in which p and q are used to indicate the 

orders of the associated autoregressive and moving average polynomials, 

respectively. 

 The stationary and invertible ARMA process can be written in a pure 

autoregressive representation discussed in Section (3.4), i.e., 

 

where,   

 

 

 

0, 
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(a)  Autocorrelation Function of the ARMA (p, q) Process 

 To derive the autocorrelation function, the equation (3.37) is rewritten as 

 

and multiplied by on both sides 

 

Take the expected value to obtain 

 

Because   

     (3.8.4) 

and hence, 

     (3.8.5) 

Equation (3.39) satisfies the pth order homogeneous difference equation given by 

(3.16). Therefore, the autocorrelation function of an ARMA (p,q) model tails off after 

lag q just like an AR(p) process, which depends only on the autoregressive 

parameters in the model. However, the first q autocorrelations depend 

on both autoregressive and moving average parameters in the model and serve as 

initial value for the pattern. This distinction is useful for model identification. 

(b) Partial Autocorrelation Function of the ARMA (p, q) Process 

 Because the ARMA process contains the MA process as a special case, its 

PACF will also be a mixture of exponential decays and/or damped sine waves 

depending on the roots of  (B) = 0 and  (B) = 0. 

 

Non-Stationary Processes 

 In previous section the stationary processes have been discussed. However, 

many applied time series, particularly those arising from economic and business 

areas, are non-stationary. With respect to the class of covariance stationary processes, 

non-stationary time series can occur in many different ways. They could have non-

constant means , time varying second moments such as nonconstant variance  2t, 

or have both of these properties. 
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3.8.3 Autoregressive Integrated Moving Average ARIMA (p,d,q) Process 

 The autoregressive integrated moving average process can be defined as 

     (3.40)  

Where,  

In what follows: 

1.  (B) will be called the autoregressive operator: it is assumed to be 

stationary, that is, the roots of  (B) =0 lie outside the unit circle. 

2.  (B) will be called the generalized autoregressive operator: 

it is a nonstationary operator with d of roots of equal to unity. 

3. will be called the moving average operator; it is assumed to be 

invertible, that is, the roots of =0 lie outside the unit circle. 

Where d = 0, the model (3.40) represents a stationary process. The 

requirements of stationary and invertibility apply independently, and in 

general, the operators and  will not be of the same order. 

 

3.8.4  Seasonal Autoregressive Integrated Moving Average, 

SARIMA  Model 

The ARIMA model is for non-seasonal non-stationary data. Box and Jenkins 

have generalized this model to deal with seasonality. The theoretical justification for 

modeling univariate time series of traffic flow data as seasonal ARIMA processes is 

founded in the time series theorem known as the world decomposition, which 

applies to discrete time data series that are stationary about their mean and variance. 

Therefore, it is also necessary to support an assertion that an appropriate seasonal 

difference will induce stationarity. 

The generalized form of SARIMA model can be written 

as:         (3.8.6) 

Where: 

 

 

 

 



23 

Where: 

are the order of non-seasonal AR, differencing and MA respectively. 

is the order of seasonal AR, differencing and MA respectively. 

represents time series data at period t. 

B represents backshift operator defined by . 

represents non-seasonal difference. 

represents seasonal difference. 

s represents seasonal order (s=12 for monthly data) 

represents white noise process at period t. It is identically and normally distributed 

with mean zero, variance ; and , that is, 

. 

From a practical perspective, fitted seasonal ARIMA models provide linear 

state transition equations that can be applied recursively to produce single and 

multiple interval forecasts. Furthermore, seasonal ARIMA models can be readily 

expressed in state space form, thereby allowing adaptive Kalman filtering 

techniques to be employed to provide a self-tuning forecast model. 

 

3.9 Model Building for a Time Series 

3.9.1 Identification 

Model identification refers to the methodology in identifying the required 

transformation such as variance stabilizing transformation and differencing 

transformations, the decision to include the deterministic parameter 0 when d >= 1 

and the proper order of p and q for the model. The purpose of identification is to 

determine the differencing required to produce stationary and the order of seasonality 

and non-seasonality of Autoregressive (AR) and Moving Average (MA) operators for 

the series. Generally, model identification is an explanatory process and analysis 

done is based upon previous result. Identification consists of specifying the suitable 

structure Autoregressive Integrated Moving Average (ARIMA) and the order of the 

model. Identification is sometimes done by looking at the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) to determine whether the 

observations are stationary or not. Once stationary is achieved, the second ARIMA 

parameter d, is simply the number of time series is differenced to achieve stationary.  

Afterward is the identification of the order of AR and MA, pure AR and MA 
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processes have characteristics signature in the ACF and PACF.  The steps use to 

identify AR and MA and their orders are simplified in the table. 

 

Characteristic Behavior of ACF, PACF of AR, MA and ARMA Processes 

Process ACF PACF 

AR(p) 

Infinite (damped exponentials and 

/or damped sine waves). 

Tail off according to  

 

Finite 

Spike at lag 1 through p, then 

cut off. 

MA(q) 

Finite 

Spike at lag 1 through q, then cuts 

off 

Infinite (dominated by 

damped exponentials and/or 

damped sine waves) Tail off. 

ARMA(p,q) 

Infinite (damped exponentials and/ 

or damped sine waves after first q-p 

lags). Irregular pattern at lag 1 

through q, then tails off according to 

 

Infinite 

(dominated by damped 

exponentials and/ or damped 

sine waves after first p-q 

lags). 

Tail off 

Source: Box, G.E.P and Jekins, G.M (1976) “Time Series Analysis Forecasting and 

Control” 

3.9.2  Estimation of Parameters 

The second step is to estimate the co-efficient of the model. After the model is 

identified for a given time series it is important to obtain efficient estimates of the 

parameters. To obtain the estimate of the parameters, the least squares method and 

maximum likelihood estimates are used. Maximum Likelihood method is used in this 

study. 

 

3.9.2.1 Maximum Likelihood Method 

 The maximum likelihood method has been widely used in estimation.  

(a) Conditional Maximum Likelihood Estimation 

For the general stationary ARMA (p,q) model 

       (3.9.1) 
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where, independently and independently normally 

distributed random variable with mean zero and variance , the joint probability 

density of a = (  is given by  

 P (a| ) = (2 )-n/2 exp .                      (3.9.2) 

and then,  can be described as 

              (3.9.3)  

These can write the likelihood function of the parameter ( ). 

 Let Z = ( and assume that the initial conditions 

        and  are known. The 

conditional log-likelihood function is 

  ln  ( ) = -  ln2  -   

where,  (( ,     (3.9.4) 

is the conditional sum of squares function. The quantities of  , , which 

maximum equation (3.68) are called the conditional maximum likelihood estimators. 

Because of ln  ( ) contains the data only through these 

estimators are the same as the conditional least squares estimators got from 

minimizing the conditional sum of squares function  which don’t contain 

the parameter . 

 By assuming  and replacing  by the sample 

mean  the conditional sum of squares function  can be written as becomes 

   (   

After obtaining the parameter estimates  , , the estimate  is calculated 

from  

    

Where the number of degrees of freedom d.f equals the number of terms used in the 

sum of  minus the number of parameters estimated.  

 

(b) Unconditional Maximum Likelihood Estimation and Back casting Method 

A further improvement in estimation, Box, Jenkins, and Reinsel (1994) suggest the 

following unconditional log-likelihood function: 

 lnL( ) = -  ln2  -      (3.9.5) 
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where S( ) is the unconditional sum of squares function given by  

 S( ) = ( 2      (3.9.6) 

And E( 2 is the conditional expectation of  given .  

 The quantities   that maximize function (3.79) are called 

unconditional maximum Likelihood estimators. Again, Since lnL( ) involves 

the data only through S( ), these unconditional maximum likelihood estimators 

are equivalent to the unconditional least squares estimators obtained by minimizing 

S( ). 

 

3.9.3 Diagnostic Checking  

Time series model building is an interactive procedure. It starts with model 

identification and parameter estimation. After parameter estimation, it has to assess 

model adequacy by checking whether the model assumptions are satisfied. The basic 

assumption is that the are white noise. That is, 's are uncorrelated random 

shocks with zero mean and constant variance. For any estimated model, the residuals  

's are estimates of this unobserved white noise 's. Hence, model diagnostic 

checking is accomplished through a careful analysis of the residual series . Because 

this residual series is the product of parameter estimation, the model diagnostic 

checking is usually contained in the estimation phase of a time series package. 

(1) To check whether the errors are normally distributed, one can construct a 

histogram of the standardized residuals  /  and compare it with the . 

(2) To check whether the variance is constant, one can examine the plot of 

residuals or evaluate the effect of different λ value in Box-Cox method. 

(3) To check whether the residuals are approximately white noise, one can 

compute the sample ACF and sample PACF of the residuals to see whether 

they do not form any pattern and are all statistically insignificant. 

The Ljung-Box (Q) test is considered as a diagnostic tool that is used to test the 

lack of fit of a time series. This uses the entire residual sample ACF's as a unit to 

check the null hypothesis.  

Hypothesis  : = = … = = 0 

   : At least one autocorrelation are not equal. 

Test statistic  : Q  = )2( +nn
− 1   

k 

Critical value  : K =  
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where, m = the number of parameter estimated in the model. 

 Based on the residual results, if the model is inadequate, a new model 

can be easily derived. 

Ljung-Box portmanteau Q statistics, Q is the test of null hypothesis which 

specifies that the ACF does not differ from zero up to lag k. It is evaluated as chi-

square with k-m degree of freedom, where k is the number of lags examined and m is 

the number of parameters estimated. The second test is to examine the ACF and the 

PACF plot of the first difference of the residual. 

The third step is to check the adequacy of the model. This step is also called 

diagnostic checking or verification. Diagnostic checking consists of evaluating the 

adequacy of the estimated model. It is important to ensure that the estimated 

parameters are statistically significant. Usually the model fitting process is guided by 

the principle of parsimony by which the best mode is the simplest possible model- the 

model with a fewer parameters- that adequately describe the data. An adequate model 

satisfies these four conditions:  

(a) The estimates of all the parameters must differ significantly from zero 

(b) All AR parameter estimates must be within the “bounds of stationary”. This 

guarantees that the model is stationary about its mean.  

(i) Bound of stationary 

The requirement of the bound of stationary is: 

 the absolute value of ø < 1, (-1 < ø < 1). If ø = 1, it becomes ARIMA (0,1,0) which is 

non-stationary. If ø > 1, the past values of Yt-k and et-k have greater and greater 

influence on Yt, it implies the series is non-stationary with an ever increasing mean. 

To sum up, if Bound of Stationary does not hold, the series is no autoregressive; it is 

either drifting or trending, and first-difference should be used to model the series with 

stationary.        

Auto-regressive Process: ARIMA (p,0,0) 

Yt = θ + ø1Yt-1 + ø2Yt-2 + …+ øpYt-p + et   (or) 

Yt = ø1Yt-1 + ø2Yt-2 + …+ øpYt-p + et  

(c) All MA parameters estimate must lie within the bounds of “invertibility”. This is 

the MA along to stationary to AR model. Where the model is re-express as infinite 

series as AR terms, inevitability guarantees that this series converges.  
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(ii) Bound of Invertibility 

The requirement of the bound of invertibility is:  

the absolute value of θ is less than 1 ( -1 < θ < 1). If not hold, the model is non-

stationary. Moving Average Process: ARIMA (0,0, q)  

Yt = θ + ø1et-1 + ø2et-2 + …+ øqet-q  

The important feature of ARIMA (0,0, q) is that the variables of et-1 to et-q are 

unobserved and have to estimated using the available sample data. In practice, it is 

usual to keep q at a small value, and it is often set at 1 or 2. 

For models of the same orders, that is AR (i) and MA (j), the bounds of invertibility 

place limit on that are identical to those on by the bounds of invertibility. 

 (d) Residual must not differ significantly from a series of purely random error (White 

noise) with mean zero. For White noise the theoretical ACF and PACF are both zero 

at all lags. For residual, the calculated standard error tends to over-estimate the true 

standard error (Monserud, 1986).The simplest way of checking the best model is to 

use goodness of fit statistics such as the real adjusted R-square mean absolute error, 

sum of square of error normalize BIC (Bayesian Information Criteria) and the 

residual plot of ACF and PACF. In summary, the best model is the one with relatively 

small of BIC, relatively small of mean absolute error, relatively small of sum of 

squares error, relatively high adjust R-square and Random pattern of the plot of the 

ACF and PACF. 

 

3.9.3.1 Model Selection Criteria 

Numerous criteria for model comparison are introduced in this selection. 

Model identification tools such as ACF and PACF used only for identifying adequate 

models. For a given data set, when there are multiple adequate models, the selection 

criterion is normally based on summary statistics from residuals computed from a 

fitted model. Some model selection criteria are based on residuals, BIC (Bayesian’s 

Information Criteria), AIC (Akaike’s Information Criteria). 

In this study, coefficient of determination (R2 or r2) and Mean Absolute 

Percent Error (MAPE) is a measure of prediction accuracy of a forecasting method 

in statistics,  the Bayesian information criterion (BIC)  and the estimated parameters 

are used for criteria of tentative ARIMA model. The higher value of R2 and the lower 

value of MAPE and normalized BIC and significance of the parameters are used as 

criteria for selecting the most adequate model among all feasible models. 

https://en.wikipedia.org/wiki/Statistics
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3.9.4 Forecasting  

Forecasting is the process of estimating future based on the analysis of past 

and present data or behaviour. Time series data is important in predicting something 

which is changing over the time using past data. The goal of time series analysis is to 

estimate the future value using the behaviours in the past data. 

 

3.9.4.1 Minimum Mean Square Error Forecasts for ARIMA Models 

 The general nonstationary ARIMA (p, d, q) model with d ≠ 0, i.e., 

 Ø (B)(1- B)dZt = θ(B) at, 

Where Ø (B) = (1- Ø B - … - Øp (B
Ø) is a stationary AR operator and θ(B) = (1- θ1 B 

- … - θ q (B
q) is an invertible MA operator, respectively. Although for this process the 

mean and the second order moment such as the variance and the autocovariance 

functions vary over time, the complete evolution of the process is completely 

determined by a finite number of fixed parameters. Hence, the forecast of the process 

can be viewed as the estimation of a function of these parameters and obtain the 

minimum mean square error forecast using a Bayesian argument. It is well known 

that using this approach with respect to the mean square error criterion, which 

corresponds to a squared loss function, when the series is known up to time n, the 

optimal forecast of Zn+l is given by its conditional expectation E(Zn+l  Zn, Zn-1, …). 

The minimum mean square error forecast for the stationary ARMA model discussed 

earlier is, of course, a special case of the forecast for the ARIMA (p, d, q) model with 

d = 0. 

 To derive the variance of the forecast for the general ARIMA model, we 

rewrite the model at time t + l in an AR representation that exist because the model is 

invertible, Thus,  

  (B) Zt+l  = a t+l,      (3.9.7) 

Where 

  (B) = j  =     ( 3.9.8) 

or, equivalently 

  Zt+l = j Zt+l ~ j + a t+l     (3.9.9) 

Following Wegman (1986), we apply the operator 
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1+  + … +       (3.9.10) 

To (3.9.10) and obtain 

  j Zt+l – j-k +  = 0,    (3.9.11) 

 

Where   = -1 and  = 1. It can be easily shown that  

 j Zt+l – j-k =   Zt+l + m-i  ψiZt+l – m +  l-1+j-i ψZt– j+1. 

        (3.9.12) 

Choosing ψ weights so that 

 ψi = 0, for = 1,2, …, l-1     (3.9.13) 

 

We have  

 Zt+l =  Zt- j+1 +     (3.9.14) 

 

Where 

 =  ψi.      (3.9.15) 

 

Thus, given Zt, for t ≤ n, we have  

 (l) = E (Zn+l ׀ Zt, t ≤ n) 

          =       (3.9.16) 

 

Because E (an+j ׀ Zt, t ≤ n) = 0, for j > 0. The forecast error is  

 en (l) = Z n+1 - (l) 

          =       (3.9.17) 

 

Where the  weights, by (3.9.13), can be calculated recursively from the j weights 

as follow:  

  = ,  j = 1, …, l – 1.        (3.9.18) 

 

Because E(en(l) ׀ Zt, t ≤ n) = 0, the forecast is unbiased with the error variance  

  Var (en(l)) =  .     (3.9.19) 
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For a normal process, the (1- ) 100% forecast limits are  

 (l) ±  [1 + ]1/2      (3.9.20) 

Where  standard normal deviate such that P(N > ) = . 

 

3.9.4.2 Model Building and Forecasting for Seasonal Model  

 Seasonal models are special forms of ARIMA models, the model 

identification, parameter estimation, diagnostic checking, and forecasting for these 

models follow the same general methods of ARIMA models which are already 

introduced in this chapter.  
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CHAPTER IV 

DATA ANALYSIS AND FORECASTING OF  

MALARIA INFECTION IN KACHIN STATE 

  

 This paper is to study the incidence of malaria in Kachin State from January 

2011 to December 2016. The monthly data are kindly supported from National 

Malaria Control program (NMCP) Myanmar. These data are analyzed by using Box-

Jenkins Method. There are four steps in this method which are model identification, 

parameters estimation, diagnostic checking and forecasting.   

The data of malaria infection cases was used as a platform for creating the 

ARIMA models. ARIMA models are used in stationary time series analysis. 

Theoretically, if the mean of the series and the covariance among its observations do 

not change over time and do not follow any trend, a time series is said to be 

stationary. Practically, most time series are non-stationary.  

In order to fit stationary models, it is indispensable to get rid of the non-

stationary source of variation. ARIMA models are one of the solutions to overcome 

the limitation of being non-stationary. Moreover, ARIMA models are the best models 

for forecasting a time series in theory. Box and Jenkins have generalized this model 

to deal with seasonality namely Seasonal ARIMA (SARIMA) model.  

In term of econometric methodology, whether time series are stationary or not 

is needed to determine. The correlogram is used to test stationary in this study. By 

observation, the data are not stationary because the series display a long-term pattern 

and the mean is not zero. On the other hand, the data have the seasonality as well. 

That is why, the seasonality test is conducted to the monthly figures using ANOVA. 

Firstly, malaria infection data are described and analyzed. And then, the 

model building processes are made for the study. The ACF and PACF function are 

used to identify the order p and q of the model in the identification stage. In term of 

the nature of p and q of the model, six feasible ARIMA models are occurred. The 

coefficient of determination (R2 or r2), mean absolute percentage error (MAPE), 

the Bayesian information criterion (BIC) and the parameters of the model are used as 

selection criteria for the most fitted model of malaria incidence data in Kachin State.  
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4.1  Descriptive Statistics of the Volumes of Malaria Infection in Kachin State  

(January 2011 to December 2016) 

The volume of incidence, minimum, maximum and average of monthly 

malaria infection in Kachin State from January 2011 to December 2016 are shown in 

Table (4.1). Over the six-year period, the table indicates that the average number of 

malaria infected people in 2011 and 2012 are the peak and its of 2016 is the least. It 

shows that the malaria infection in Kachin State are declined. The maximum and 

minimum infection of 2011 are 5482 and 1166 and its of 2012 are 6932 and 1262.  

Comparing every month of a year, the average incidence of malaria is peak on 

June and July. Over the six-year period of June, the maximum and minimum 

infection are 5327 and 802. The maximum malaria infected month is every July of the 

study years. The maximum infection of those month is 6932 and its minimum 

infection is 539.   

 

Table (4.1) Volumes of Malaria Infection in Kachin State  

     Year 

Month 
2011 2012 2013 2014 2015 2016 Min Max Average 

Jan 1890 1797 1478 724 489 221 221 1890 1100 

Feb 1441 1545 1167 733 465 179 179 1545 922 

Mar 1166 1262 925 621 407 132 132 1262 752 

Apr 2109 1579 1057 617 454 293 293 2109 1018 

May 3458 2515 1867 972 705 434 434 3458 1659 

Jun 5327 5181 4228 1949 1400 802 802 5327 3148 

Jul 5482 6932 4024 2301 1537 539 539 6932 3469 

Aug 4872 5514 3855 2063 1302 334 334 5514 2990 

Sep 4328 4141 2977 1349 970 208 208 4328 2329 

Oct 3517 3022 2143 1013 719 131 131 3517 1758 

Nov 2971 2292 1862 877 604 138 138 2971 1457 

Dec 2261 1805 1187 769 409 106 106 2261 1090 

Min 1166 1262 925 617 407 106 106 1262 747 

Max 5482 6932 4228 2301 1537 802 802 6932 3547 

Average 3235 3132 2231 1166 788 293 293 3235 1808 

Sources: National Malaria Control Program (NMCP), Nay Pyi Taw 
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Figure (4.1) indicates that the series has a seasonal pattern with peaks and 

valley in the same month of the year. There are regular patterns with different 

magnitudes. Therefore, the test for seasonality of the Malaria Infection in Kachin 

State data series is conducted as follows.  

 

Figure (4.1) Volumes of Malaria Infection in Kachin State 

4.2  Test of Seasonality for Malaria Infection in Kachin State 

 Seasonality are testing by using ANOVA table. The results for testing the 

seasonality in number of malaria incidence in Kachin State from 2011 to 2016 are 

illustrated in Table (4.2). 

Hypothesis 

Null Hypothesis  : H0 = There is no seasonality (no monthly effect). 

Alternative Hypothesis : H1 = There is seasonality (monthly effect). 

 

 

 

 



35 

Table (4.2)  ANOVA Table for Malaria Incidence in Kachin State 

  
Sum Square 

Degree of 

Freedom 
Mean Square F-ratio 

Due to Month 59477005.71 11 5407000.519 12.27721 

Due to Year 92590835.13 5 18518167.03 42.0476 

Error 26864983.04 61 440409.5581 
 

Total 178932823.9 77 
  

 In term of the above ANOVA table, at 5 % level of significance, the critical 

value of K=F (0.05,11,61) is 1.9174. The computed value of F is 12.27721 which is 

greater than K-value (1.9174). According to the decision rule, the result is lead to 

reject H0 which is no monthly affect in data. Therefore, there is seasonality in Malaria 

Infection of Kachin State data series. As seasonality is existed in data series, seasonal 

index is calculated as follow. 

 

Table (4.3)   Seasonal Index for Malaria Infection in Kachin State 

Month 2011 2012 2013 2014 2015 2016 mean 
Seasonal 

Index 

Jan   0.55 0.58 0.46 0.53 0.43 0.51 0.4703 

Feb   0.47 0.48 0.51 0.53 0.41 0.48 0.4422 

Mar   0.39 0.39 0.47 0.48 0.35 0.41 0.3827 

Apr   0.49 0.46 0.50 0.55 0.87 0.57 0.5293 

May   0.80 0.83 0.82 0.88 1.42 0.95 0.8765 

Jun 1.65 1.66 1.92 1.69 1.80 5.47 2.37 2.1851 

Jul 1.70 2.24 1.87 2.03 2.04   1.98 1.8249 

Aug 1.50 1.80 1.82 1.85 1.78   1.75 1.6179 

Sep 1.34 1.37 1.43 1.23 1.36   1.35 1.2428 

Oct 1.11 1.02 1.05 0.94 1.04   1.03 0.9524 

Nov 0.95 0.79 0.98 0.84 0.92   0.90 0.8270 

Dec 0.71 0.66 0.68 0.77 0.69   0.70 0.6505 

Total       12.99 12 

The seasonal index of the data is shown in Table (4.3). The seasonal index is a 

ratio and it has an average value of 1. In this study, the seasonal index of January to 
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May and October to December are lower than 1. The seasonal index for June is 

2.1851, it means that June is 218 percent of monthly average. The seasonal index for 

malaria infection was highest on June in Kachin State. Seasonal indices of July, 

August and September are 1.825, 1.618 and 1.243 respectively which mean July is 

183 percent, August is 162 percent and September is 124 percent of monthly average. 

It means that Malaria infection in Kachin State from June to September of every year 

is greater than monthly average which indicates that the data has seasonality.  

 After proving the original data series has seasonality and finding the seasonal 

index, the ARIMA model building is performed as follow.  

  4.3 Model Identification for Malaria Infection in Kachin State 

 Model identification refers to the methodology in identifying the required 

transformations. The sample autocorrelation function (ACF) and sample partial 

autocorrelation function (PACF) are shown in Table 4.4 (a) and (b). The correlograms 

for sample autocorrelation function (ACF) and sample partial autocorrelation function 

(PACF) were found for the original series Zt and displayed in Figure (4.2) along with 

the confidence limits.  
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Figure (4.2)  The Correlograms for Sample ACF and PACF of Malaria 

Incidence in Kachin State 

According to the above Figure (4.2), the ACF of original series Zt  shows 

damped sine waves and partial autocorrelation function (PACF) cuts off after lag 2 of 

malaria incidence in Kachin State. Therefore, Malaria Infection in Kachin State data 

series seems to fit an AR (2) model. 

However, the series may not be stationary both in the mean and the variance. 

The plot of monthly malaria infection in Kachin State between January 2011 to 

December 2016 indicates both that the mean level depends on time and that variance 

decreases as the mean level decreases. The Log transformation is needed to make 

stationarity in variance. 
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Table (4.4) Sample Autocorrelation Function (ACF) and Sample Partial Autocorrelation Function (PACF) of Malaria Incidence in 

Kachin state (Zt) 

(a)  k  For {Zt} 

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

Zt 

1-12 0.886 0.656 0.415 0.227 0.113 0.060 0.076 0.150 0.276 0.440 0.595 0.658 

St-E 0.115 0.115 0.114 0.113 0.112 0.111 0.110 0.110 0.109 0.108 0.107 0.106 

13-24 0.579 0.399 0.194 0.037 -0.054 -0.090 -0.081 -0.041 0.027 0.116 0.202 0.234 

St-E 0.105 0.104 0.103 0.103 0.102 0.101 0.100 0.099 0.098 0.097 0.096 0.095 

 

(b) kk For {Zt} 

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

Zt 

1-12 0.886 -0.594 0.104 0.073 0.016 0.007 0.225 0.111 0.251 0.273 0.133 -0.243 

St-E 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 

13-24 -0.237 -0.022 -0.033 0.066 -0.030 -0.064 -0.081 -0.104 -0.081 -0.085 -0.005 -0.031 

St-E 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 
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To remove non stationarity, logarithms transformation is performed to 

stabilize the variance of a time series. The transformed volumes of Malaria Infection 

in Kachin State are described in Figure (4.3) 

 

Figure (4.3) Transformed Volumes of Malaria Infection in Kachin State 

 The sample ACF and sample PACF for natural logarithms series Ln (Zt) are 

shown in Table 4.5 (a) and (b) and they were displayed in Figure (4.4). 
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Table (4.5) Sample Autocorrelation Function (ACF) and Sample Partial Autocorrelation Function (PACF) for Natural Logarithms of 

Malaria Incidence in Kachin state Ln (Zt) 

(a) k For Ln (Zt)  

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

Ln (Zt) 

1-12 0.897 0.736 0.553 0.411 0.326 0.299 0.328 0.377 0.445 0.496 0.531 0.515 

St-E 0.115 0.115 0.114 0.113 0.112 0.111 0.110 0.110 0.109 0.108 0.107 0.106 

13-24 0.435 0.317 0.192 0.100 0.050 0.037 0.053 0.084 0.128 0.176 0.209 0.195 

St-E 0.105 0.104 0.103 0.103 0.102 0.101 0.100 0.099 0.098 0.097 0.096 0.095 

 

 

(b) kk For Ln (Zt) 

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

Ln (Zt) 

1-12 0.897 -0.352 -0.140 0.161 0.124 0.087 0.172 0.037 0.175 0.031 0.098 -0.116 

St-E 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 

13-24 -0.191 -0.072 -0.026 -0.004 -0.029 -0.100 -0.010 -0.006 0.084 0.103 -0.010 -0.109 

St-E 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 
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Figure (4.4)  The Correlograms of Sample ACF and PACF for Natural 

Logarithms Series of Malaria Incidence in Kachin State 

 The ACF of Ln (Zt) series show damped sine wave and there is significant 

spike of PACF at Lag 1 and 2. Therefore, the log transformed data series seems to fit 

an AR (2) Model. But the log transformed series is not stationary in the mean. To 

remove non-stationary, the log transformed data series is needed to compute as 

seasonal differencing because of existing seasonality. It means that it leads to remove 
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changes in the level of the time series. The seasonal differenced log transformed 

volumes of Malaria Infection in Kachin State are shown in Figure (4.5). 

 

Figure (4.5) Seasonal Differenced Log Transformed Volumes of Malaria 

Infection in Kachin State 

The sample ACF and PACF of seasonal differenced log transformed series are 

shown in Table 4.6 (a) and (b) and they are displayed in Figure 4.6.  

 

 



43 

Table (4.6) Sample Autocorrelation Function (ACF) and Sample Partial Autocorrelation Function (ACF) of Seasonal Difference 

Transformed Series for Malaria Incidence in Kachin State (Wt) 

(a) k For Wt from (1-B12) Ln (Zt)  

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

Wt 

1-12 0.840 0.642 0.468 0.377 0.348 0.301 0.274 0.241 0.208 0.113 0.033 -0.029 

St-E 0.126 0.125 0.124 0.123 0.122 0.120 0.119 0.118 0.117 0.116 0.115 0.114 

13-24 -0.039 -0.017 -0.012 -0.007 -0.041 -0.048 -0.025 0.000 0.020 0.017 0.033 0.064 

St-E 0.112 0.111 0.110 0.109 0.108 0.106 0.105 0.104 0.102 0.101 0.100 0.098 

 

 

(b) kk For Wt from (1-B12) Ln (Zt) 

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

Wt 

1-12 0.840 -0.212 -0.029 0.161 0.089 -0.122 0.113 0.000 -0.035 -0.240 0.086 -0.042 

St-E 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 

13-24 0.045 0.011 0.004 0.000 -0.090 0.089 0.133 -0.072 -0.007 -0.009 0.077 0.033 

St-E 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 
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Figure (4.6)  The Autocorrelation and Partial Autocorrelation Function of 

Seasonal Transformed Series for Malaria Incidence in Kachin State. 

As the ACF decays at multiples of seasonal period 12 implies that a seasonal 

differencing (1-B12) is made to achieve stationary. As a result of this, the sample ACF 

decays exponantially and sample PACF is significant spike at only Lag 1 which 

suggest SARIMA (1,0,0) x (0,1,0)12 may be for this data series. Therefore, estimated 

parameters are needed to figure out for the tentative model. 
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  4.4   Parameter Estimation for SARIMA (1,0,0) x (0,1,0)12 Model 

 The parameters of SARIMA (1,0,0) x (0,1,0)12 Model for Malaria Infection in 

Kachin State are described in Table (4.7).  

Table (4.7) Model Parameters of SARIMA (1,0,0) x (0,1,0)12 model for Malaria 

Incidence in Kachin state 

ARIMA Model Parameters 

Malaria Infected People-Model_1 Estimate SE T Sig. 

Malaria 

Infected 

People 

Natural 

Logarithm 

Constant -0.547 0.244 -2.238 0.029 

AR Lag 1 0.908 0.063 14.528 0 

Seasonal Difference 1       

It can be seen that the estimated parameter of 1 is 0.908 which is less than 

one, supporting the required stationary and invertibility condition.  Since its p-value is 

zero, there is no evidence to reject the null hypothesis. It is statistically significant at 

0.01 significance level.  

SARIMA (1,0,0) x (0,1,0)12 model is  

 (1 – Ø1Β) (1-Β12) Ln (Zt)=  0 + at 

the estimated model is  

  (1-0.908) (1-Β12) Ln (Zt)= -0.547 + at 

With respect to the estimated results of malaria infected people in Kachin 

State, the feasible model is SARIMA (1,0,0) x (0,1,0)12 model for the data series of 

Malaria Incidence in Kachin State.  

 

4.5 Diagnostic Checking for SARIMA (1,0,0) x (0,1,0)12 Model 

The estimated residual ACFs and PACF for the above model are illustrated in 

Table 4.8 (a) and (b). 
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Table (4.8) Estimated Residual ACFs and PACFs of SARIMA (1,0,0) x (0,1,0)12 Model for Malaria Incidence in Kachin State 

(a)  

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

 

1-12 0.153 -0.108 -0.228 -0.138 0.206 0.107 0.051 0.018 0.025 0.016 -0.009 -0.140 

St-E 0.129 0.132 0.134 0.140 0.142 0.147 0.148 0.149 0.149 0.149 0.149 0.149 

13-24 -0.038 0.067 -0.005 0.102 -0.082 -0.107 -0.008 0.019 0.045 -0.082 -0.044 -0.019 

St-E 0.151 0.151 0.152 0.152 0.153 0.153 0.155 0.155 0.155 0.155 0.156 0.156 

 

(b) 

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

 

1-12 0.153 -0.134 -0.197 -0.092 0.211 -0.018 0.029 0.090 0.096 -0.016 0.008 -0.137 

St-E 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 

13-24 -0.009 0.024 -0.097 0.086 -0.056 -0.071 0.024 0.043 -0.039 -0.088 0.031 -0.036 

St-E 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 
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The residuals of ACF and PACF for the tentative SARIMA (1,0,0) x (0,1,0)12 

Model are described in Figure (4.7). 

 
 

Figure (4.7)  The Autocorrelation and Partial Autocorrelation Function of 

Residuals for SARIMA (1,0,0) x (0,1,0)12 Model 

According to Figure (4.7), the residuals values of the ACF and PACF for the 

Malaria Incidence are all small and fall within the two limits, lower confidence limit 

(LCL) and upper confidence limit (UCL) as well as exhibit no pattern, it can be said 

that the residual series are white noise process. It means SARIMA (1,0,0) x (0,1,0)12 

model is adequate to represent the seasonally log transformed data series of Malaria 

Incidence in Kachin State.  

On the other hand, the autocorrelation among residuals are checked by using 

the test statistic (Q).  

   H0 : 1 = 2 = … = k = 0 (There is no autocorrelation among residuals.) 

The detail summary residual values for SARIMA (1,0,0) x (0,1,0)12 model is shown 

in Table (4.9). 
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Table (4.9) Model Statistics of SARIMA (1,0,0) x (0,1,0)12 Model for Malaria Incidence in Kachin State 

 

Model Statistics 

Model 
Number of 

Predictors 

Model Fit statistics Ljung-Box Q (18) 
Number of 

Outliers 
Stationary R-

squared 
R-squared MAPE 

Normalized 

BIC 
Statistics DF Sig. 

Malaria Infected 

People-Model_1 
0 .759 .920 14.977 12.192 15.268 17 .576 0 

As the result of above table, the observed value of Q is 15.268 and it is not significant since p-value is 0.576 which is greater than 0.05. It 

means there is no autocorrelation among residuals. Thus, the model SARIMA (1,0,0) x (0,1,0)12 is adequate.  

 In addition, another possible model, SARIMA (1,0,0) x (1,1,0)12 Model, to represent seasonal log transformed Malaria Incidence in 

Kachin State data series is also fitted as follow.  
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4.6 Parameter Estimation for SARIMA (1,0,0) x (1,1,0)12 Model 

The parameters of SARIMA (1,0,0) x (1,1,0)12 Model for Malaria Incidence in 

Kachin State are shown in Table (4.10). 

Table (4.10) Model Parameters of ARIMA (1,0,0) x (1,1,0)12 Model for Malaria 

Incidence in Kachin State 

ARIMA Model Parameters 

Malaria Infected People-Model_1 Estimate SE T Sig. 

Malaria 

Infected 

People 

Natural 

Logarithm 

Constant -0.536 0.238 -2.252 0.028 

AR Lag 1 0.927 0.061 15.250 0.000 

AR, 

Seasonal 
Lag 1 -0.300 0.179 -1.676 0.099 

Seasonal Difference 1       

The results are providing that the seasonal autoregressive order one, Ø1 was 

estimated to be 0.927 (SE= 0.061) and seasonal Φ1 was estimated to be -0.300 (SE= 

0.179) and statistically significant at 0.1 significance level. The estimated parameters 

of Ø1 and Φ1 are less than one, supporting the required stationary and invertibility 

conditions. 

SARIMA (1,0,0) x (1,1,0)12 model is  

 (1 – Φ1Β
12) (1 – Ø1Β) (1-Β12) Ln (Zt)=  0 + at 

the estimated model is  

 (1 + 0.3Β12) (1-0.927) (1-Β12) Ln (Zt)= -0.536 + at 

With respect to the estimated results of malaria infected people in Kachin 

State, SARIMA (1,0,0) x (1,1,0)12 model is a tentative model for data series of 

Malaria Incidence in Kachin State.  

 

4.7 Diagnostic Checking for SARIMA (1,0,0) x (1,1,0)12 Model 

The estimated residuals of ACF and PACF for the tentative SARIMA (1,0,0) 

x (1,1,0)12 Model are described in Table 4.11 (a) and (b). 
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Table (4.11) Estimated Residual ACFs and PACFs of SARIMA (1,0,0) x (1,1,0)12 Model for Malaria Incidence in Kachin State 

(a)  

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

 

1-12 0.138 -0.106 -0.238 -0.123 0.189 0.114 0.076 0.001 0.034 -0.059 -0.002 -0.009 

St-E 0.129 0.132 0.133 0.140 0.142 0.146 0.147 0.148 0.148 0.148 0.149 0.149 

13-24 -0.005 0.044 -0.077 0.098 -0.003 -0.073 -0.048 0.016 0.040 -0.068 -0.050 -0.071 

St-E 0.149 0.149 0.149 0.149 0.150 0.150 0.151 0.151 0.151 0.152 0.152 0.152 

 

(b) 

Lag k 1 2 3 4 5 6 7 8 9 10 11 12 

 

1-12 0.138 -0.127 -0.211 -0.079 0.184 0.003 0.053 0.067 0.111 -0.081 0.032 -0.012 

St-E 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 

13-24 -0.031 -0.003 -0.084 0.123 -0.035 -0.088 -0.004 0.073 -0.049 -0.114 0.006 -0.032 

St-E 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 0.129 
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The residuals ACF and PACF of SARIMA (1,0,0) x (1,1,0)12 Model are 

shown in Figure (4.8). 

 

Figure (4.8)  The Autocorrelation and Partial Autocorrelation Function of 

Residuals for SARIMA (1,0,0) x (1,1,0)12 Model 

 According to Figure (4.8), the residuals values of ACF and PACF for the 

Malaria incidence are all small and lie inside the confidence limits, lower confidence 

limit (LCL) and upper confidence limit (UCL), as well as exhibit no pattern. This 

suggested that the residuals are white noise. SARIMA (1,0,0) x (1,1,0)12 model is 

adequate to perform the seasonally log transformed data series of Malaria Incidence 

in Kachin State. 

On the other hand, the autocorrelation among residuals are checked by using 

the test statistic (Q).  

   H0 : 1 = 2 = … = k = 0 (There is no autocorrelation among residuals.) 

The detail summary residual values for SARIMA (1,0,0) x (1,1,0)12 Model is shown 

in Table (4.12). 
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Table (4.12) Model Statistics of SARIMA (1,0,0) x (1,1,0)12 Model for Malaria Incidence in Kachin State 

Model Statistics 

Model 

Number 

of 

Predictors 

Model Fit statistics Ljung-Box Q (18) Number 

of 

Outliers Stationary 

R-squared 

R-

squared 
MAPE 

Normalized 

BIC 
Statistics DF Sig. 

Malaria Infected 

People-Model_1 
0 0.771 0.928 14.083 12.168 12.641 16 0.699 0 

As the result of above table, the observed value of Q is 12.641 and it is not significant since p-value is 0.699 which is greater than 0.05. It 

means that there is no autocorrelation among residuals. 

By comparing these two feasible Models, SARIMA (1,0,0) x (0,1,0)12 Model and SARIMA (1,0,0) x (1,1,0)12 Model, the value of R-

squared for SARIMA (1,0,0) x (1,1,0)12 Model is slightly larger than the other one. On the other hand, the values of MAPE and Normalized BIC 

are smaller than other one as well. That is why, SARIMA (1,0,0) x (1,1,0)12 Model is adequate to fit and used to forecast the malaria infection of 

Kachin State next year. 
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4.8 Forecasting with SARIMA (1,0,0) x (1,1,0)12 Model for Kachin Malaria 

Infection Series 

The forecast values for 12 months period from January to December, 2017 are 

shown in Table (4.13) and displayed in Figure (4.9).  

Table (4.13) Forecast Values with 95% Limits for Malaria Infection in Kachin 

State 

Year Forecast values 
95% Limits Actual Malaria data 

for 2017 LCL UCL 

Jan 2017 65 44 93 64 

Feb 2017 59 35 96 71 

Mar 2017 49 26 86 62 

Apr 2017 94 46 174 73 

May 2017 150 68 289 213 

Jun 2017 298 129 595 386 

Jul 2017 243 101 499 297 

Aug 2017 172 69 363 186 

Sep 2017 118 46 253 106 

Oct 2017 81 31 176 99 

Nov 2017 82 30 181 54 

Dec 2017 63 23 140 20 

The results indicate that the predicted values of SARIMA (1,0,0) x (1,1,0)12 

Model is not very close to the true value but all of them fall within lower confidence 

level (LCL) and upper confidence level (UCL) which proved the reliability of data 

series. According to these forecasting results, Malaria infection of Kachin state lead 

to eliminate in near future. 
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Figure (4.9) Forecast Values with 95% Limits for Malaria infection for   

SARIMA (1,0,0) x (1,1,0)12 Model 

  

 



 

CHAPTER V 

CONCLUSION 

 

This study focuses on the modeling and forecasting of Malaria Infection in 

Kachin State by modeling data from January, 2011 to December, 2016 using time 

series SAREMA model. SARIMA model can be obtained by using four iteratively 

Box-Jenkins steps and provide the prediction of the malaria infected number of 

people in Kachin State. Following Box and Jenkins methodology, the time series 

modeling involves for transformation of the data to achieve stationary, followed by 

the identification of appropriate models, estimation of model parameters, diagnostic 

checking of the assumption model and finally forecasting of the future data values.  

In model identification process, test of seasonality is conducted by using 

ANOVA. Theoretical and estimated autocorrelation function (ACF) and partial 

autocorrelation function (PACF) play important role in the construction of SARIMA 

model. The estimated residuals are analyzed using the ACF and PACF to diagnose if 

the residuals are consistent with the hypothesis that the residuals are white noise.  

Non-constant variance is removed by performing a natural log transformation. 

Then, trend in the series is removed by taking seasonal differencing. The results 

indicate that SARIMA (1,0,0) x (1,1,0)12 Model is the fitted models. The model was 

also be able to represent the past data with MAPE, R2 and normalize BIC are 14.083, 

0.928 and 12.168 for malaria infection in Kachin state. As forecasting is essential for 

planning and operational control in a variety of areas, forecasting is made based on 

the best fitted SARIMA model.  

In term of “Myanmar Times” publication on July 2017, The Public Health 

Department is aiming to make five regions; Yangon, Ayeyarwaddy, Bago, Mandalay 

and Magwe to free from malaria by 2020. Anti-malaria campaigns are especially 

being implemented in those regions according to the department.  

Evaluation and forecasting the volume of malaria infection in Kachin State are 

significantly declined. The results of malaria infection in Kachin state is decreased 

over 50 % of infection (3517 to 1631) from 2016 to 2017. Although the Kachin State 

is not included in 2020 targeted areas for eliminating Malaria Infection in Myanmar, 

Malaria Incidence in Kachin State might be eliminated in 2020. It is because the 

finding of this study is shown that malaria incidence in Kachin State was declining. 
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That is why it can be clearly realized how the implementation of anti-malaria 

activities were continuously conducted by the responsible people.   

The SARIMA model was used the data of malaria infection of Kachin State 

from January, 2011 to December, 2016, which contained 72 observations. Next 12 

months was forecasted by the SARIMA (1,0,0) x (1,1,0)12 model well reflected the 

trend in the malaria infection of Kachin State. Results are indicated that SARIMA 

model was capable of representing the number of malaria infection in the following 

month with relative precision. That is why forecasting using time series models are 

useful of policy-making, supports for the planning and future analysis in Myanmar’s 

health industry. 
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APPENDIX 



 

 
Calculation of Seasonal Index 

Time 
Malaria 

Infection 

Centered Moving 

Average (CMA) 

Malaria infection / 

CMA 

Seasonal 

Index 

Jan_2011 1890   0.4703 

Feb_2011 1441   0.4422 

Mar_2011 1166   0.3827 

Apr_2011 2109   0.5293 

May_2011 3458   0.8765 

Jun_2011 5327 3231.29 1.65 2.1851 

Jul_2011 5482 3231.75 1.70 1.8249 

Aug_2011 4872 3240.08 1.50 1.6179 

Sep_2011 4328 3222.00 1.34 1.2428 

Oct_2011 3517 3160.63 1.11 0.9524 

Nov_2011 2971 3115.25 0.95 0.8270 

Dec_2011 2261 3169.58 0.71 0.6505 

Jan_2012 1797 3256.75 0.55 0.4703 

Feb_2012 1545 3275.71 0.47 0.4422 

Mar_2012 1262 3247.29 0.39 0.3827 

Apr_2012 1579 3198.38 0.49 0.5293 

May_2012 2515 3151.08 0.80 0.8765 

Jun_2012 5181 3118.79 1.66 2.1851 

Jul_2012 6932 3089.75 2.24 1.8249 

Aug_2012 5514 3059.96 1.80 1.6179 

Sep_2012 4141 3024.17 1.37 1.2428 

Oct_2012 3022 2975.42 1.02 0.9524 

Nov_2012 2292 2908.71 0.79 0.8270 

Dec_2012 1805 2747.83 0.66 0.6505 

Jan_2013 1478 2557.54 0.58 0.4703 

Feb_2013 1167 2439.92 0.48 0.4422 

Mar_2013 925 2354.79 0.39 0.3827 

Apr_2013 1057 2300.25 0.46 0.5293 

May_2013 1867 2256.58 0.83 0.8765 

Jun_2013 4228 2199.42 1.92 2.1851 

Jul_2013 4024 2149.92 1.87 1.8249 

Aug_2013 3855 2119.17 1.82 1.6179 

Sep_2013 2977 2088.17 1.43 1.2428 

Oct_2013 2143 2032.54 1.05 0.9524 

Nov_2013 1862 1900.29 0.98 0.8270 

Dec_2013 1187 1733.54 0.68 0.6505 

Jan_2014 724 1587.08 0.46 0.4703 

Feb_2014 733 1444.58 0.51 0.4422 

Mar_2014 621 1329.67 0.47 0.3827 

Apr_2014 617 1241.54 0.50 0.5293 



 

Time 
Malaria 

Infection 

Centered Moving 

Average (CMA) 

Malaria infection / 

CMA 

Seasonal 

Index 

May_2014 972 1183.08 0.82 0.8765 

Jun_2014 1949 1155.88 1.69 2.1851 

Jul_2014 2301 1134.92 2.03 1.8249 

Aug_2014 2063 1114.83 1.85 1.6179 

Sep_2014 1349 1099.13 1.23 1.2428 

Oct_2014 1013 1081.21 0.94 0.9524 

Nov_2014 877 1047.21 0.84 0.8270 

Dec_2014 769 992.50 0.77 0.6505 

Jan_2015 489 928.96 0.53 0.4703 

Feb_2015 465 881.46 0.53 0.4422 

Mar_2015 407 853.42 0.48 0.3827 

Apr_2015 454 829.79 0.55 0.5293 

May_2015 705 803.42 0.88 0.8765 

Jun_2015 1400 777.25 1.80 2.1851 

Jul_2015 1537 754.17 2.04 1.8249 

Aug_2015 1302 730.79 1.78 1.6179 

Sep_2015 970 712.63 1.36 1.2428 

Oct_2015 719 694.63 1.04 0.9524 

Nov_2015 604 658.42 0.92 0.8270 

Dec_2015 409 591.92 0.69 0.6505 

Jan_2016 221 510.00 0.43 0.4703 

Feb_2016 179 437.92 0.41 0.4422 

Mar_2016 132 381.67 0.35 0.3827 

Apr_2016 293 337.75 0.87 0.5293 

May_2016 434 305.71 1.42 0.8765 

Jun_2016 802 146.54 5.47 2.1851 

Jul_2016 539   1.8249 

Aug_2016 334   1.6179 

Sep_2016 208   1.2428 

Oct_2016 131   0.9524 

Nov_2016 138   0.8270 

Dec_2016 106   0.6505 

 


